Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming Herstellung: Medienzentrum Der Tu Bergakademie Freiberg Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming
نویسندگان
چکیده
This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization spread under the name of the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that, although the process of deriving necessary optimality conditions for the latter problem is more involved, the conditions themselves do not– to a large extent–differ from those known for the conventional problem. It has been already well recognized in the literature that for optimality conditions of the usual optimistic bilevel program appropriate coderivative constructions for the set-valued solution map of the lower-level problem could be used, while it is shown in this paper that for the original optimistic formulation we have to go a step further to require and justify a certain Lipschitz-like property of this map. This occurs to be related to the local Lipschitz continuity of the optimal value function of an optimization problem constrained by solutions to another optimization problem; this function is labeled here as the twolevel value function. More generally, we conduct a detailed sensitivity analysis for value functions of mathematical programs with extended complementarity constraints. The results obtained in this vein are applied to the two-level value function and then to the original optimistic formulation of the bilevel optimization problem, for which we derive verifiable stationarity conditions of various types entirely in terms of the initial data.
منابع مشابه
A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem
Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...
متن کاملBILEVEL LINEAR PROGRAMMING WITH FUZZY PARAMETERS
Bilevel linear programming is a decision making problem with a two-level decentralized organization. The textquotedblleft leadertextquotedblright~ is in the upper level and the textquotedblleft followertextquotedblright, in the lower. Making a decision at one level affects that at the other one. In this paper, bilevel linear programming with inexact parameters has been studied and a method is...
متن کاملNew Optimality Conditions for the Semivectorial Bilevel Optimization Problem New Optimality Conditions for the Semivectorial Bilevel Optimization Problem Herstellung: Medienzentrum Der Tu Bergakademie Freiberg New Optimality Conditions for the Semivectorial Bilevel Optimization Problem
The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary ...
متن کاملSensitivity Analysis for Two-Level Value Functions with Applications to Bilevel Programming
This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization spread under the name of the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that, although the process of deriving necessary optimality condition...
متن کاملA New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کامل